Journal of Organometallic Chemistry, 172 (1979) C63-C65 © Elsevier Sequoia S A, Lausanne - Printed in The Netherlands

Preliminary communication

ELECTRONIC STRUCTURE AND REACTIVITY OF $X_2Co_2(CO)_6$ ($X_2 = RC_2R'$, P_2 , As_2) AND $R_xR'_{6-x}C_6Co_2(CO)_4$ RADICAL ANIONS

R S DICKSON*, B M PEAKE, P H RIEGER**, B H ROBINSON^{*} and J SIMPSON Department of Chemistry University of Otago, P O Box 56, Dunedin (New Zealand) (Received March 23rd, 1979)

Summary

Radical anions of the dinuclear species $X_2Co_2(CO)_6$ ($X_2 = P_2$, As_2 , RC_2R') and $R_x R'_{6x} C_6Co_2(CO)_4$ have been characterized by electrochemical and ESR methods The frozen solution spectra could be analysed in unusual detail to evaluate the g and hyperfine tensor components and these data allow definitive statements to be made about the directional nature and orbital character of the unpaired electron density Most of the $RC_2R'Co_2(CO)_6^-$ radical anions decay to monomeric paramagnetic species

Detailed descriptions of the redox properties, electronic structure and bonding of $X_2Fe_2(CO)_6$ molecules ($X_2 =$ bridging ligand) have been presented [1,2] and this system is reasonably well understood. The analogous cobalt system, where the valence orbitals are all filled [2], is not so amenable to study and the directional nature of the Co—Co bonding interaction is still the subject of some controversy, 1 e whether it is a 'straight' or 'bent' interaction [1,3]. This note presents results on the new radical amons $X_2Co_2(CO)_6^-$ which give significant information on the nature of the orbital containing the unpaired electron, the directional nature of the metal interaction and the redox chemistry of $X_2Co_2(CO)_6$ molecules. The formation of the remarkably stable 'flyover' radical amions $R_x R'_{6-x}C_6Co_2(CO)_4^-$ is also described

Acetylene [4], arsenic [5] and phosphorus [6] bridged dimers $X_2 \operatorname{Co}_2 (\operatorname{CO})_6$ ($X_2 = \operatorname{RC}_2 \operatorname{R}'$, As_2 , P_2), and 'flyover' acetylene compounds [7] undergo a reversible electrochemical one-electron reduction in THF to the appropriate radical anion. The reduction potentials, ranging from -0.26 to -1.01 V (vs Ag/AgCl), are sensitive to the nature of the bridging group and the type of bridging moiety (Table 1). A second reduction step, close to the first, was observed

^{*}Present address Department of Chemistry Monash University Victoria (Australia)

^{**}Present address Department of Chemistry, Brown University Rhode Island (USA)

REFRESENTATIVE RADICAL ANIONS					
Radical anion	E1/2 (V) ^a	(g)	(a ^{CO}) (mT)	⟨a ^X ⟩ (mT)	
Ph ₂ C ₂ Co ₂ (CO) ₆	-0 81	2 001	-2 82		
$Bu_2^{t}C_2Co_2(CO)_6^{-1}$	-1 01	2 009	-2 84		
CH ₃ C ₂ SiMe ₃ Co ₂ (CO) ₆	-	2 012	-2 86		
CF ₃ C ₂ S1Me ₃ Co ₂ (CO) ₆	-0 68	2 013	-2 66		
CF ₃ C ₂ CF ₃ Co ₂ (CO) ₆ ⁻	-0 49	2 015	-2 37		
$P_2Co_2(CO)_6$	-0 56	2 007	-2 80	374	
As2Co2(CO)	-0 52	2 012	2 81	2 1 2	
(CF ₃) ₆ C ₆ Co ₂ (CO) ₄	-0 26	2 013	3 11		

REPRESENTATIVE RADICAL ANIONS

^avs Ag/AgCl in acetone solution

for the acetylene derivatives Chemical reductants such as sodium, sodium naphthalenide and ferrocenium tetrafluoroborate effect reduction to the radical anions in good yields at -70° C The isotropic ESR spectra showed the expected 15 lines resulting from hyperfine coupling with two equivalent cobalt nuclei (I = 7/2) The central lines were noticeably asymmetric as a result of unresolved second-order shifts [8]. In the case of the P₂Co₂(CO)₆⁻ and As₂Co₂(CO)₆⁻ species, hyperfine coupling was observed to two equivalent phosphorus or arsenic atoms (Table 1) [2].

ESR spectra of frozen THF solutions at -160° C of X₂Co₂(CO)₆ were sufficiently well-resolved to unambiguously determine the largest hyperfine tensor component a_1 . In some cases other features were also resolved, which enable us to analyse the spectra in detail [9]. The magnitude of the anisotropic hyperfine tensor components (e g $X_2 = CF_3C_2SiMe_3, g_1 = 2.02, g_2 = 2.012, g_3 = 2.007, a_1 =$ 27 mT, $a_2 = -42 \text{ mT}$, $a_3 = -6.49 \text{ mT}$) suggests that the unpared electron occupies a molecular orbital largely cobalt 3d in character [10] If the Co-Co and X—X vectors respectively define the molecular z and x axes, then under $C_{2\nu}$ symmetry only linear combinations of d_{z^2} , d_{yz} and $d_{x^2-y^2}$ orbitals are of the required $* A_1$ and B_2 symmetry Since the A_1 orbitals are strongly bonding we conclude that the unpaired electron is in a B_2 orbital. An orbital having 72% d_{z^2} and 28% d_{vz} character is required by the experimental anisotropic parameters, in good agreement with the ratio derived from molecular orbital calculations on $X_2Fe_2(CO)_6$ molecules [1]. With respect to the directional nature of the Co–Co interaction the analysis of the $X_2 = CF_3C_2S_1Me_3$ spectrum shows that the major hyperfine tensor axes are oriented at $\alpha \sim \pm 15^{\circ}$ relative to the Co-Co vector The 72% d_{z^2} , 28% d_{yz} combination requires that the principal hyperfine tensor axes be displaced from the local z and y axes on each cobalt by $\beta \simeq \pm 10^{\circ}$. Thus, as shown in the diagram, the local z axes are aligned at ca 25° relative to the Co-Co vector, in good agreement with the orientation of the axial carbonyl ligand (32°) in the case of $(C_6H_5)_2C_2(CO)_6$ [11] and with the angles utilized by Dahl and co-workers in their theoretical analysis of $X_2 Fe_2(CO)_6$ compounds [1]. The angle α may be identified with the orientation of the bonding interaction in the metal-metal bond [1]

All of the 'flyover' radical amons, $R_x R'_{6-x} C_6 Co_2(CO)_4^-$, have half-lives of at

TABLE 1

^{*}It is found that two tensor components are negative and only A_1 and B_2 combinations give this result. Orbitals of B_1 and A_2 symmetry (cobalt d_{xy} and d_{yz}) lead to two positive and one negative tensor.

Fig 1 View down C-C bond axis of acetylenedicobalt

least several hours at room temperature In contrast, the half-life of $Ph_2C_2Co_2(CO)_6^$ is less than 1 min at -60° C A novel feature of the chemistry of the X₂ Co₂ (CO)₆ $(X_2 = RC_2R')$ species was the rapid decay to monomeric paramagnetic species at temperatures above -60° C except when R = R' = CF₃ Typical of the ESR parameters are $\langle g \rangle = 2.058$ and $\langle a^{Co} \rangle = 5.22$ mT for the monomer derived from $Ph_2C_2Co_2(CO)_6$ Reduction of $RC_2R'Co_2(CO)_6$ compounds in the presence of phosphite or phosphine ligands accelerates the formation of monomers (which in this case show hyperfine coupling to phosphorus of $\sim \langle a^{p} \rangle = 10.9 \text{ mT}$) such that $RC_2R'Co_2(CO)_6$ species are not observed, even at $-70^{\circ}C$ It is known [12] that radical amons derived from uncoordinated alkynes slowly dimenze in THF to produce butadiene dianions A similar process accelerated by the template and electronic effect of the metal can be visualized for our system

Further work is in hand to extend the series of acetylene- and phosphorusbridged radical amons, to confirm the theoretical analysis, to establish the exact nature of the monomeric species and to isolate some of the more stable radical anions

Acknowledgements

Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research

References

- 1 BK Teo MB Hall RF Fenske and LF Dahl Inorg. Chem 14 (1975) 3103
- 2 DF Thorn and R Hoffmann, Inorg Chem, 17 (1978) 126
- 3 PS Braterman, Struct Bonding (Berlin) 10 (1961) 57
- 4 R S Dickson and D F Fraser Advan Organometal Chem 12 (1974) 323 5 A S Foust M S Foster and L F Dahl, J Amer Chem Soc, 91 (1969) 5633
- 6 A Vizi-Orosz G Palyi and L Marko J Organometal Chem, 60 (1973) C25
- 7 R S Dickson and P J Fraser Aust J Chem 25 (1972) 1179
- 8 BM Peake P H Rieger B H Robinson and J Simpson, Inorg Chem 18 (1979) 1000 9 BM Peake P H Rieger B H Robinson and J Simpson, to be published
- 10 CE Strouse and LF Dahl Disc Faraday Soc 47 (1969) 93
- 11 W G Sly, J Amer Chem Soc 81 (1959) 18
- 12 G Levin J Jagus-Grodzinski and M Swarc Trans Faraday Soc 67 (1971) 768